一、高数八个重要极限公式是什么

高数没有八个重要极限公式,只有两个。

1、第一个重要极限的公式:

高数公式定理大全(高等数学十大定理公式)

lim sinx/ x= 1(x->0)当x→0时,sin/ x的极限等于1。

特别注意的是x→∞时,1/ x是无穷小,无穷小的性质得到的极限是0。

2、第二个重要极限的公式:

lim(1+1/x) ^x= e(x→∞)当x→∞时,(1+1/x)^x的极限等于e;或当x→0时,(1+x)^(1/x)的极限等于e。

扩展资料:

高数公式定理大全(高等数学十大定理公式)

“极限”是数学中的分支——微积分的基础概念,广义的“极限”是指“无限靠近而永远不能到达”的意思。

数学中的“极限”指:某一个函数中的某一个变量,此变量在变大(或者变小)的永远变化的过程中,逐渐向某一个确定的数值A不断地逼近而“永远不能够重合到A”的过程中,此变量的变化,被人为规定为“永远靠近而不停止”、其有一个“不断地极为靠近A点的趋势”。

极限是一种“变化状态”的描述。此变量永远趋近的值A叫做“极限值”(当然也可以用其他符号表示)。

极限的求法:

1、连续初等函数,在定义域范围内求极限,可以将该点直接代入得极限值,因为连续函数的极限值就等于在该点的函数值。

2、利用恒等变形消去零因子。

3、利用无穷大与无穷小的关系求极限。

4、利用无穷小的性质求极限。

5、利用等价无穷小替换求极限,可以将原式化简计算。

6、利用两个极限存在准则,求极限,有的题目也可以考虑用放大缩小,再用夹逼定理的方法求极限。

参考资料来源:百度百科-极限(微积分概念)

二、高等数学十大定理公式

高等数学十大定理公式有有界性、最值定理、零点定理、费马定理、罗尔定理、拉格朗日中值定理、柯西中值定理、泰勒定理(泰勒公式)、积分中值定理(平均值定理)。

1、有界性

|f(x)|≤K

2、最值定理

m≤f(x)≤M

3、介值定理

若m≤μ≤M,∃ξ∈[a,b],使f(ξ)=μ

4、零点定理

若 f(a)⋅f(b)<0∃ξ∈(a,b),使f(ξ)=0

5、费马定理

设f(x)在x0处:1,可导 2,取极值,则f′(x0)=0

6、罗尔定理

若f(x)在[a,b]连续,在(a,b)可导,且f(a)=f(b),则∃ξ∈(a,b),使得f′(ξ)=0

7、拉格朗日中值定理

若f(x)在[a,b]连续,在(a,b)可导,则∃ξ∈(a,b),使得 f(b)−f(a)=f′(ξ)(b−a)

8、柯西中值定理

若f(x)、g(x)在[a,b]连续,在(a,b)可导,且g′(x)≠0,则

∃ξ∈(a,b),使得 f(b)−f(a)g(b)−g(a)=f′(ξ)g′(ξ)

9、泰勒定理(泰勒公式)

n阶带皮亚诺余项:条件为在$x_0$处n阶可导

$f(x)=f(x_0)f'(x_0)(x-x_0)+\dfrac{f''(x_0)}{2!}(x-x_0)^2+...+\dfrac{f^{(n)}(x_0)}{n!}(x-x_0)^n+o((x-x_0)^n)\,x\xrightarrow{} x_0$

n阶带拉格朗日余项:条件为 n+1阶可导

$f(x)=f(x_0)f'(x_0)(x-x_0)+\dfrac{f''(x_0)}{2!}(x-x_0)^2+...+\dfrac{f^{(n)}(x_0)}{n!}(x-x_0)^n+\dfrac{f^{(n+1)}(\xi)}{(n+1)!}(x-x_0)^{n+1}\,x\xrightarrow{} x_0$

10、积分中值定理(平均值定理)

若 f(x)在 [a,b]连续,则∃ξ∈(a,b),使得∫baf(x)dx=f(ξ)(b−a)

三、高数中的十大定理公式

高等数学十大定理公式有有界性、最值定理、零点定理、费马定理、罗尔定理、拉格朗日中值定理、柯西中值定理、泰勒定理(泰勒公式)、积分中值定理(平均值定理)。

1、有界性

|f(x)|≤K

2、最值定理

m≤f(x)≤M

3、介值定理

若m≤μ≤M,∃ξ∈[a,b],使f(ξ)=μ

4、零点定理

若 f(a)⋅f(b)<0∃ξ∈(a,b),使f(ξ)=0

5、费马定理

设f(x)在x0处:1,可导 2,取极值,则f′(x0)=0

6、罗尔定理

若f(x)在[a,b]连续,在(a,b)可导,且f(a)=f(b),则∃ξ∈(a,b),使得f′(ξ)=0

7、拉格朗日中值定理

若f(x)在[a,b]连续,在(a,b)可导,则∃ξ∈(a,b),使得 f(b)−f(a)=f′(ξ)(b−a)

8、柯西中值定理

若f(x)、g(x)在[a,b]连续,在(a,b)可导,且g′(x)≠0,则

∃ξ∈(a,b),使得 f(b)−f(a)g(b)−g(a)=f′(ξ)g′(ξ)

9、泰勒定理(泰勒公式)

n阶带皮亚诺余项:条件为在$x_0$处n阶可导

$f(x)=f(x_0)f'(x_0)(x-x_0)+\dfrac{f''(x_0)}{2!}(x-x_0)^2+...+\dfrac{f^{(n)}(x_0)}{n!}(x-x_0)^n+o((x-x_0)^n)\,x\xrightarrow{} x_0$

n阶带拉格朗日余项:条件为 n+1阶可导

$f(x)=f(x_0)f'(x_0)(x-x_0)+\dfrac{f''(x_0)}{2!}(x-x_0)^2+...+\dfrac{f^{(n)}(x_0)}{n!}(x-x_0)^n+\dfrac{f^{(n+1)}(\xi)}{(n+1)!}(x-x_0)^{n+1}\,x\xrightarrow{} x_0$

10、积分中值定理(平均值定理)

若 f(x)在 [a,b]连续,则∃ξ∈(a,b),使得∫baf(x)dx=f(ξ)(b−a)